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SUMMARY

There is considerable interest in the subject of
efficient wing design for high speed flight, together with good
manoeuverability at transonic speed and satisfactory
near-to-the-ground performance. An important area is the
detail design of wing leading edges with or without leading
devices and variable camber, the flow may be attached or

sevarated.

In this report, slender bodvr theory with exact
boundary condition is used to calculate the flow past a thin
conically cambered wing (i.e. with drooped leadina edges).
The leading edge flow separation has been modelled as a

vortex-cut arrangement.

Calculated results suggest that the leading edge camber
has a very marked effect on the local pressures near the leaa-
ing edges, and hence on the overall aerodynamic forces. In
particular, the lift-drag ratio can be enhanced by suitable

choice of leading edge droop.

An interesting feature of the results is the indication
of multiple-valued solution for realistic cambers, i.e. when
the shoulder of the dAroops is verv near the leading edge. In
experiment this is not likelv and another seraration svstem

may exist near the high curvature wing section. The work in




this report therefore points to inadegquacy of current design

approaches with simulation of one vortex system only.

The method of this report may also be extended to
incorporate, thin extensions of wing span, leading edge
devices, secondary vortices and variation of separation
points. Cross-section thickness may also be included. More
complex vortex sheet repnresentation of the separation may
also be incorvorated. From the point of view of aircraft
manoeuverability, winag root gaps or leading edge gaps are
of interest. Another consideration is for the asymmetrical

effects.




LIST OF SYMBOLS

al

g(v)

OA in Z-plane, Fig.5.
radius of circle in Zo-plane, Fig.5.
aspect ratio = 4k.

defined by equation (33).

defined by eguation (32)}.
CB in Z-plane, Fig.5.

c/a J
lift coefficient.

linear lift coefficient.
non-linear 1lift coefficient.

draa coefficient.

l1ift induced drag coefficient.
profile drag.

defined by z e31% = e, + i £,
function
defined in Appendix A.

defined in Appendix A.

given by h2 = 1 + (1/c2)
defined in Fig.4. - amount of leading edge droop j
imaginary part

defined by eaquation (40)

defined in Appendix A.

defined in Appendix A.

cot (angle of sweep)
lift dependent drag factor NA Cp/C;?2
1ift




defined in section II.7

defined in Fig.4.

real part.

radius of circle in Z,-plane in Fig.5 (= a/sinécosf).
OP in Z,-plane, Fig.5.

CP' in Z;-plane, Fig.5.

parameter in equation (10)

semi-span

vertical slit plane, Fig.5. T yT + izt

vertical slit plane, Fia.5. Te = y7g + iz

vortex position in Te-plane, Fig.S.

perturbation velocities in x,y,z system.

velocity at infinity.

velocity component normal to surface in cross-flow plane.
complex velocity potential.

(3 = 1,2,3,4) defined in section II.4.
Cartesian coordinates.

y + iz

Yy t izv vortex position in Z-plane.

y. + 1 z, (3 = 0,1,2,3) complex planes see Fia.5.

] J
angle of incidence.
angle of incidence at zero lift.
defined in equation (39)
angle of incidence for no singularity at the leading edge.
tansd
half the angle AO'R in Z,-plane, Fig.5.
vortex strength.

droop angle as defined in Fig.4.

defined in section II.6.
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o angle POA in 2,;-plane, Fig.5.

K 1ift dependent drag factor = HACD/CLZ.

A angle PO'yo in Zo-plane, Fig.5.

p density.

¢ half angle POB in Z:-plane, Fig.5.

] velocity potential.

%% normal component of velocitv in cross-flow plane.
¥ defined by siny = tané¢/tané

suffix u refers to the upper surface.
2 refers to the lower surface.

superscript ' refers to variable guantity in integration.

subscript L or L.E. refers to leading edge

v refers to vortex
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INTRODUCTION

There is considerable interest in the subject of efficient wing
design for high speed flight together with good manoeuverability at transonic
speed and satisfactory near-to-ground performance. An important area is
the detail design of wing leading edges with or without
leading edge devices and variable camber. The flow may be

attached or separated.

The designer is faced with simultaneous constraints of
efficient high-speed cruise (at low lift coefficient CL'
high Mach number M), satisfactory take-off and landing

performance (at high C low M) and good transonic

L'
manoeuverability (low to high CL' M near 1). These constraints
necessarily result in performance limiting compromises. By

way of an example, we take the case of an aircraft with

highly swept-back winags (Figure la) or having a portion which

is highly swept-back (Figure 1b). It has been shown that

gains in flying efficiency i.e. lift-drag ratio, can be
obtained by drooping the leading edge. The amount of droop

and its geometry, e.g. the shoulder position derpends on *the

operating C Thus for low CL values the ovntimum position

L.
of the shoulder of the droops may be near the leading edge,

whilst at higher values of C better results are obtained

L'
with somewhat gentler camber shapes (Figure lc). The choice

of droop is subject tu compromises of this nature.




g RGPy m -

-

.-

The extent of such limiting compromises can be reduced
by permitting the designer with greater flexibility in the
geometric configuration. One approach is the use of fixed
or variable geometry near the leading edges. Variable camber
with or without slats or other devices (Figure 1d) fall into

this category.

For conventional aircraft with wings of low sweep-b:
there is a considerakle amount of information available - the
subject of leading edge design with or without devices (R ~ i).
Calculation methods have been devised for treating 2-D
geometries (Figs. 2 and 3). The methods are strictly
applicable only when 3-D effects such as those due to wing-

tips or fuselage junctions, are small.

For wings of higher sweep-back, however, there seems
to be only a small amount of information available, particularly
with regard to leading edge devices. An idea of the order of
gains from leading edge devices can be obtained by reference
to the work of Ray and Hollingsworth (Ref.2) on F-4 Fighter
aircraft with leading edge sweep-back 51.4°. They conclude
that incorporation of devices resulted in a sizable 33%
improvement on the buffet onset, L/D performance gain of 35%
at CL = .8 and improved lateral directional characteristics
throughout the test Mach number range of 0.6 to 0.94. The

improvements were verified in a subsequent flight evaluation.

Goodmanson and Gratzer (Ref.3) show 24% improvement in L/D

at C;, = 0.4, using droop and slats on a highly sweep-back wing.
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At present there are no suitable methods which take
into account the flow separation and are generally applicable.
There are, however, a few attempts to solve the 3-D wings
with separation under development. These are of panel or
collocation type. They require a great deal of computer
time and use large cores in the computer. It is not clear
whether these methods will permit adequate resolution with
panels or collocation points to deal with high curvature droops
near the leading edges, or leading edge devices, or

secondary vortices.

There have been however a numbcr of attempts (Refs. 4 to
16) to calculate the flowfields within the framework of
slender bodv theorv. The slender body theory is applicable
in subsonic or moderately supersonic flow (i.e. the component
of flow normal to the wing leading edge is less Mach 0.6).
Refs. 4 - 7 concentrate on attached flow. In particular,
Cooke {(Ref.7) deals with very general and realistic droop
configurations. The flows calculated are however for the
particular case where the leading edge singularity vanishes.
Refs. 8-12 idealise the flow separations by line vortex-cut
arrangements. Attempt has been made only to calculate the
flows for flat or circular arc camber wings. The approach
of Jobe (10) although nominally for gencral camber ianores the

zero incidence flows.

In Refs. 13-16, the leading erdge separations are more
realistically modelled by vortex sheet representations. Once
again only the uncambered wing and circular arc camber cases

have been fully considered. A more general approach by
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Fernandez and Holla (16) does not include the camber effects
at zero incidence directly. In this report an attempt has

been made to calculate the flows around general wing camber

shapes with droop on basis of Ref.7 and idealised vortex-cut
arrangements as in Ref.8. This procedure is considered to

be an essential step before embarking on more complicated

vortex sheet representation.

It must be mentioned that the attached flow solutions

can be obtained by not including the separation effects.

The method of this report mav also be extended to
incorporate, thin extensions of wina svan, leading edge
devices, secondary vortices and variation of sevaration

points. Cross~section thickness may also be included.
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II THEORETICAL FORMULATION

II.1 Equation of Motion

Equation of motion to be satisfied is the well
known Laplace Equation which represents a slightly
perturbed main stream velocity V and corresponding

Mach Number M:

- M2 o] =
(1 M )Qxx + Yy +¢zz O.

where ¢ is the disturbance velocity potential and
X, Y, z are Cartesian co-ordinates fixed to the wing

(x-axis along the centre line of the wing Fig.4 ).

Tre flow-field is restricted to highly swept wings
and the term (1 - Mz)"’xx may be neglected. The
equation of motion then becomes Laplace's eguation in

y and =z dimensions

This is the governing equation of motion of slender
wing (or body) theory and applies throughout the Mach

number range.

II.2 Boundary Conditions and Flow Model

The conditions on the wing are:
(1) The wing is solid and hence the normal velocities

are zero.

N

———

C_J I
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(1i) For attached flow at the leading edge the condition
is that the flow turns around the leading edge. 1If

the edge is sharp the velocity is infinite.

If the flow separates at the leading edge, the
condition to be applied is that the velocity is finite at

the edge.

The conditions in the field are:
(i) The disturbances vanish at infinity.

(ii) The fluid Pressure is continuous.

A conical wing with leading edge drooped, at incidence o to the
freestream V and with Cartesian axes xyz is shown in
Fig.l. The semi-span of the wing is S=kX and the
shoulder is distance ns from the centre, the amount of

droop is Hs.

The model approximates the vorticity in the separated
vortex sheets from the leading edge (*s(x), -Hs) by a

concentrated pair of vortices of strength T (x) above the
wing at positions 1y, (x), 2zy(X). The strength r(x)

varies in streamwise direction and therefore in order to

satisfy Kelvin's Law of Conservation of Circulation, feeding

dr (x

vortex sheets in the form of 'cuts' of strength X

at the leading edges have been assumed. The axis of
vorticity in these sheets is assumed to liein the yz-plane
and because slender wing conical flow is implied, the cuts

do not affect the velocity profile in cross-fluw plane.

~
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It is noted that the component of free stream V
in x-direction is Vcosa and in the cross-flow yz-plane,
Vsina. Both components must be considered to obtain

the velocity and pressure fields.

II.3 Camber Shape Transformations and their Properties

Ir. order to make a satisfactory study by the slender
body theory, it is necessary to find conformal trans-
formation which *ransforms the camber line in the cross-
flow plane Z = y + iz into a circle or a vertical slit.

For a general shape this cannot be done in closed form

and in the present approach, the series of transformations

as used by Maskell and Cooke-Ref.7 are employed. These

are summarised as follows (see also Fig.5):

Transformations
2 =y + iz
zg = 22 - 4¢c? or 22 = Zg + 4¢? (1)
2, =12, + 2latan$ or Z, =12, - 2iatan§ (2)

~

22 4+ 1 = 2 = a?
2, = 5 I 2/53 4a’or z, =12, + Z (3)
z° = Z, - iatan$ or 2, = Z_, + latans (4)
2
T

T =2 -21 = e+ 1 ?

e o 2, or 2 = 7 - ZJT; + 4a, (5)
T =T, + 2ia;siné or T, =T - 2iagind (6)

|
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These transformations leave the point at infinity

i i , unchanged.

It must be mentioned that the camber in Z-plane
is generated on the assumption of a circular arc in the

Z3;-plane.

The Transformation derivatives are given by the

following relations

az  _ 2, ’
dz, 2
dz, _
2, 1
%
dz, le .
+ (7) i
) daz: _ i
S =1
o
. Q2o _ __Z5°
. dTe ZO + 312
: dTe _
ar -1 J

e

2
We shall also require gig/%% for the evaluation

of Boundary Condition of zero force on Vortex-cut

& arrangement (Section II.6) and this is derived here.
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From eguations (7), we have

dz _dz 4z, 4z
darT VA

. d*z.4dz _ 4%z | dz, _ 4%z dz d?zo 4T
e Fr/ar z *azar C az, ' " az

2a§ zg
+(z°+a1 ) * (8)

If a point P on the circle is given by

A _ ie,

2o, = a secGelx (= a1el ) and Z; = re

then it can be easily shown that

r? - a? = 2r.a.tanésing (<)

r = a tandisiné + a/1 + tan?8sin?® (10)
and that

ys: = 2a cosf V1 + tan®dsin‘e

z3 = -2a tanécos?9.

If we write

sind = sinédcos8 (11)

then we have

A‘” -

. . . N
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¥s = R sin 2¢

23 = - R(l-cos2¢)
where
R = 2a cosec 26.
Hence
= -1i¢
Z3 = 2R sinde ‘ (12)

and ¢ 1is angle shown in Fig.2 and R 1is the radius of
the circle in the Zj;-plane.

Family of Cross Section Shapes

There are simple relations between the various

parameters of the drooped wing and thecse are derived here.

At the leading edge of the wing A where 8 =0

and ¢ =68, 23 and 2 = (+s - iHs) are related by

Zy = 2a secse” 16,

216

z (s - iHs)? = 4c? + 4a?sec?se “*°,

On separating real and imaginary parts, we get

g2 (1 -H°) = 4c? + 4a?(1 - tan?$) (13)

s’H = 4a?tans. (14)

At the shoulder point B where 23 = 0 and

y = 2¢ = ns. (15)

From equations (13), (14) and (15) we find

1 - H* - n?_ 1-tan?s
H tan?

or

cot 286 =1=-n" - ¥
cH
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Given n and H this determines 6§ and then c/a

may be obtained from

2
=2 _ €°_ n°tané
¢ =3 H

It is useful at this stage to collect here for

reference certain formulae which will be required later.
If dso is an element of the arc of the circle, then
dso = a secédr = {r? + (dr) }%de = X_ do* (16)

cosé

For points on droops we have from equationsz (1) and

(12)
d dz, _ 2 -3i¢
2 2 (d¢ + id¢) = B8R singe
or
dy , idz _ 4R’sin 4
d¢ ¢ Ze‘l¢
If we let

z e3ld = e, + if,

! : then on the droops

dz _ _ £y

Now if ds is the element of arc on the droops we note that

|d¢ dz . 4R2§ing (18) |

on the droop .l

“‘Im
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ldzz, - ll _a?| _ ll _a® |_ r2-ate-210
dz, A1 rfeqv| = r

S - 2a’r’cos2b + a° . /lxf-a?) " + 4r¥aZsin’e6
r? r?

(19)

2a sind
r cos §

using equation (9).

In many cases we shall consider &§ so small that we

may ignore &% compared with unity.

We then have

[ 2 2
2 _ 20=h cos 9 2C°cos‘@
2] 4a*{e" + cos 8 cos®d§

(1-2sin26cos29)}s
(20)

2 (=2 2 52 (cos"*0+E2cos?0-282co0s"0)
4a? (€% + cos?9) {1 + T+ cosTH)? }

Also

9« 2310y 9{eai¢(4c2+4R2sin2¢e-21¢)} = 4 (c?sin3¢+R%sin’¢) .|
(21)

3
4a2{c? (3sin¢~4sin®¢) + —§i¥-37¥6}

sin‘éen

= 4a? siné 362cose+cos’e+52cos’e(1-4c2)J...(22)

The Normal Velocity on the Surface

Since the surface of the wing is conical through origin

0 1its equation must be homogenous in x,y,z and may be written
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gﬂn
L]
h

5\

and

e
XN
]

k  f(y/kx) - gg £* (y/kx)

=kz——5xod—z
kx kx dy

Kk
— (ey1z + £,2
sex( 1 12)

using equation (17) and puttino kx = s.

Hence

9 k . .
3§ = 53, {(ey + ify)(y + iz)}

-k 2. 31¢
Pr (z¢e Y.

The velocity normal to the contour in the cross-flow
plane due to the component V cosa is on the "drooos"

(ref.7), see Fig.6.

2z k| (g2e3i
30 _ v = v cosaz= _ v cosa.sel. (Ze )
n n . <§—;>2}" /I + (£1/e1)?

- k V cosa (Zze3i¢)
s|z]

ceieecrens (23)

v is.zero on the flat part of the section.

In order to find the complex velocity potential we shall

need the component v in Zo-plane which is related to

Vn by the mapping ratio %; |. Using equations (1), (12),
o

(19), (21) and (23) we find that




- az
vno n laib
= v daz g..z-s, 4z, dz,
n |3z,||d%.] |3z, |3z,
- kv cosa’(zzes%ﬂl .|2s] 2a_sine
2 r cos

sz |

16k V a?cosa(c?sin®¢ + R?sin’¢)sin6écosb.
s cos?s |z|%r

0150(24)

Care must be taken with signs here. We adopt the convention
that vn represents the component ot velocity along outward
drawn normal. Therefore VL is positive on upper surface

and negative on the lower surface of the droops. vp, is zero at
the leading edge.

II1I.4 The Cogplex Velocity Potential

The Complex Velocity potential W comprises the cross-
flow and axial flow contributions. The cross flow
contributions arise due to the freestream components V sina,
V cosa and the vortices *T at (tyv, zv). The axial
contribution arises due to V cosa. This can be represented

as
W= W;(V sina) + W, (V cosa) + Wy(T) + We(X)eeeee.. (25)

By virtue of transformation of the Z-plane to Te-plane,

Wy and Wy become

- - AL To-Te:
Wy iﬁ' log Te (27)
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where Te, 1is the position of right hand vortex in the

Te~Plane.

We 1s simply written as
Wy = V cosa.x. (28)

W, arises for wings other than thin and flat and Weber (Ref.l7)

and Cooke (Ref.7) show that it is best represented in i
lo-plane. W, is defined as the complex velocity potential

required to produce a normal velocity vn, at the surface

of the circle. It is equivalent to considering the effects

of a source of strength ZII.aJ.Vno at the centre of the

circle together with a source distribution on the circumference

of strength 2(vny, = Vny) per unit length, where Pn, 1is

the mean velocity on the circumference given by

- - 1 2" » » -,
Yng = -27[0 Vi, (A7)dAT (29)

er-ouning woutnpmpuppn

For a thin wing it can be verified that ;no vanishes as expected.

Hence the complex velocity potential W, is given by !

Wy = 2—1'1 2vh log (Zo-23)ds}

a 2%
= L), Vho (A7) log (Z5-25) dr” (300
where 2,” is a point on the contour but 2, is any point in the l
complex plane.
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On the surface of the circle in Z,-plane, following Weber(l7), the
velocity potential ¢, can be written as
a. f2n
= (W) = -"—1 L Vi, (A7) log |zg-25] da* (31)

aw
we shall also need az% for calculation of velocities. It follows from

differentiation of equation (30)

¥, a; I2w Vao (x7) dar-
daZ, W Z

Zo W |, S - 2,

= I (Zo) (32)

v
The reduction of integral I, (Z,) is dealt with in Appendix A. This

is interpreted as a Cauchy Principal Value integral and its value depends :

on whether the point Z, lies on the surface of the circle or outside it,

as follows:-~

Zo on circle Z, = alelA
dwz _ I (Zo) _ a_l- 2" Vno (A ) - Vno (A) dA‘*‘ al Vno (A) (33)
dz, ~ Vv BREI Zo - 24 Zo
2o outside circle Z, = pelx, p ”a
21 v (A°) - v, ()) 2a, v, ()
aw a n, n 1 'n
22 1, (23) :J.I 0 = ar + ———2 (34)
az, T, Zo - Z4 Zo

dw
Alternative forms for Wy and its derivative azi bave been derived by
(7)

Cooke . He uses 6” as the integration variable instead of A”. Using
equations (16), (24) and (30), W can be written as

2m

W2 =C J B” (07) log (Z, - Z) de6~ (35)

o}
where

2

C = 16 k.V a 2cos a (36)

T8 cos‘ §
B~ (8°) = (c2sin3¢” + R%sin3¢~) sind“cosh” (37)

cos¢‘|Z‘|2

* On the surface of the wing W; can be reduced to ¢; and evaluated

exactly (Ref. 7and 17) as shown in Appendix B.
dw,

The complex velocity derivative 32; is given by
o R f” B’ (0°) g0” (38)
dZ, o Zo - 2o

Equation (20) on substitution of equations (21), (22) and (23) becomes
ir 1 Te-Te,

- z— log === ¢+ Wy + V cosa.x (319
™ BT,

W (Tg) = - iV sina . Tg

with W, given by either equation (30) or (35).
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The complex velocity derivative aw is given by

l
}
b
!
{
E aw dTe dTe ir( 1 1 ]dTe dWy dZ,
?
2
}

dz
E_Z = I I = - iVsina * 32 " Om \Ta T, T4 4z Az, " A2 (40)
e e el Te Tel ZD

dw
with -ﬁ given by either equation (33) or (34) or (38).

I11.5 The Boundary Condition of Finite Velocity at the Leading Edge

L

? This condition is applied in the cross-flow plane at the leading edge
] 2%
( (Z=s-1Hs, Z, = aje 16). The complex velocity derivative % is non
singular at the leading edge. Using equation (39), we obtain
F dTe dT,  dW, dZ ,
. g—z--J.Vsma.——d;--l—r-{Tl -—1 ] e+d2.do (41)
1 2n e-Tél Te+'1‘el dz Zq Z
where
dz, dz, dz; dz, dz; dz, dZ,

dz " dz; * 4z, * dz3 * Az C 3z, " dz
dTe dTe dZ,

dz dz, * dz

At the leading edge dZ; is infinite, although other derivatives of the
dZ,

transformations are finite. Hence for finite gz at the leading edge, we
must have [ dd,:.q ] =0

L.E.
[dw] =£—iVsina-i—r[ S ]+dw2 dZo:‘ =0

dTe)y, g 21 (TeTe; ~ TeiTe, dZg " AT} .
or
. Te, +T, dz .

iVsina=-;—£.——l—_i-l-+aD [a—-,r—o] (42)

Tel Te1 €JL.E.
where
ap = [dw

4z ©/L.E. ;

and ;
{dZO} { 2 ] !
aT,. il Yl .
Te L.E. Zo"ta, L.E. T

ap can be obtained directly from equation (33) by numerical integration

or from the exact method outlined in Appendix C.
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II.6 The Boundary Cohdition of Zero Force on the

Vortex-cut.

The condition of zero force on the vortex-cut combination
follows directly from Brown and Michael (8) and can be written
as

Vv
(vy + iw;)Z=zV = 3 (2ZV - ZL)

' or
¥ V.. _ 3
(vq iw;)Z=ZV = (22, = 2;) (43)
where v; + iwy is the velocity at the right-hand vortex and
is found by subtracting the velocity field of the vortex at

zV from the total velocity and taking the limit as 2 -+ ZV.

Using equation (38), the complex velocity potential Ww;

at the right-hand vortex is written as

Wy = W+ %f-[l log (2-2,) (44)

and by differentiating with respect to Z and taking the limit

‘ as 2 » ZV, we obtain
4
[ %%{] = vy - iw
' Z*ZV
i.e.
ir, 1 1 ar ir 1
awWa | {-iVsina - sl - —-—')} 7z t 57 7=% °
[ai]z Y 21 ToTy, Te+Te1 dz * 2N Z-%,
-
. (d"z . dzo)
dz, T4z,
Zo Z*Zy
dawy, | .
with s given by either equation (34) or (37).
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Substituting equation (35) for V sina, we have,
az
iret%y | azo ., _dr [{ 1 _dTe } _ 1 |are
T

vi-iwg= |-55 T-e-T‘e_l %Dgs 20 e_TeJ -2, T, +T |9z

N,  dz,
"(dzo T Jyg, (48)

Now by using L'Hospital's rule it can be shown that

az a2z
1 _ate ) . _ _1 | az
{T -T Z’Zv} ST T
e te IT
1 dTe To=T

e

and eaquation (8) may be substituted here.

From equation.(45), we can write the vortex strength

I' as
Viog -7 dzZg - q 92a
r . _(2zv ZL).ZHi + adekL L2014 ayFTe 14 46)
Te *+T Y
e‘ .»-e1+ Ex - l- dTe
T, « T . +T Z
e ve, e g d
where
dw, dzo> :
a =(__ . L% (47)
\' dz, =~ dZ 202,

The complex equation (46) now gives a complex value for
the vortex strength for a given position of the vortex .
The procedure we follow is to fix the height of the vortex and

vary the spanwise position until T has zero imaginary part.

The angle of incidence then follows directly from equation (42).

This procedure is based on Reference 8.

m A iy S— . .

A BB =B
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II.7 Pressure Distribution and Forces

Pressure Coefficient

The pressure coefficient to the same order as the linearized equation

for the potential is given for slender configurations by

= ein2, - o ¥x 1l a2 2
Cp = sin¢a 2 v cosa Vz (¢y + 02 )

¢ = & (x,y, 2) 4::;;§W}-

In conical flow ¢ may be written as

where

¢ = x.0 +y.® + 2.4 + u(aconstant)
X y z

The differentiation with respect to x is for constant y and z, i.e. constant
Z, so that

f oon koo - ) -+ 98 '

It follows then that

o o oG- 8 9 (
| - [R5 - )] 2

1 - W and g follow from equation (39) and (40). The constant u must

- be chosen so that Cp vanishes as y, z + =,

On the surface of the wing the part of the complex potential

N due to drooped leading edges (W) presents some problem and care

must be taken in its evaluation. In Appendix B, a method for reduction

of W, to ¢, based on Refs 7 and 17 has been given.

dw,
- Similarly, care must be exercised in evaluation of TET . The Cauchy
. . Principal value integral is implied and numerical integration procedure

- should account for this,
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The 1ift force coefficient CL based on the projected
area of the wing s?/k is given by combining the linear lift
expression of Ref.7 with the non-linear 1lift due to the

vortices (e.g. Ref.15)

C
L o-omkz . 4(%)(2+2c’+tan’6)51n“
cosla
4(3) GosZs - COoSa(M=8°N) + 2 . Ho . (To#Te) .
where M =1+ 8c? + 16c" - 16-;::2 - 16c*
h E ’

- - - =2 ot ot
N = 2(53 + 83* ~ 40C° - 14F + 12§ + 40 + &,).

The lift and induced drag coefficients CL and CD may also

be obtained from integration of pressures on the wing as follows
Forces
We define the conical winp surface by the equation
F(x,y,2)s 2 - kx { (y/kx) = 0
Unit normal vector fi defining the surface is given by

P i Fx +3] sy + k Fz

2 2 2y
{Fx + ry + FZ }

where  F, = -k £ (/) 4 Y 17 (1)
2 =k (2/,) + k(7,0 977,
Foo= =k B0 /e = £ ) = Y274y
Fz = 1

We also define

r

1
= 2 2 2&"
F_ = {Px + Fy + rz }
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The Force vector dF is defined by
dF = cpdsSn
where d S is an clemental surface area. This is can be represented in

terms of arc length d 0 as

ds = 5-. x . do for a conical wing of centre line chord x.

2

dz \2 - 2 2
do dy2+dz? = dy? (1 + W) = dy? {1 + £°2)

The force coefficients (‘.x and ¢ in x and z directions respectively are
[o]

then given by

1 !
ij (14£°2)° (kL$Y/, 1)
.

and . y=s y=s

e o= -2 [ Ckdro 2 [ op s Iz
pd '\‘(l' Y=o "‘)\" y= -t ] r
bl '
= lep (o= .
‘ ' TR d (V)

r

Lift coefficient CL and drag coefficient Cp, follow by resolving the force

coeffica.entscx and Cz'
CL s Cz cos a - Cx sin a

c

D Cz sin a + Lx cos a

It must be mentioned that although the above derivations are generally

applicable, in this report we have not included viscous effects.
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IITI RESULTS

The type of camber lines generated by the method are
shown in Fig. 7. The angle of droop measured at the leading-

edge increases as the shoulder position moves outboard.

For each configuration, there are two particular incidences

a, and ag. a, corresponds to zero lift and og to the

attitude where the load at the leading edge vanishes. For

an uncambered wing a and ag both coincide at 0°. However,
for a wing with leading edge droop, both a, and ag will

be positive.

Strictly speaking the value of a, depends on the method
of solution of the problem i.e. if the flow is assumed to be
separated as in present theory or if it is attached. The
difference in practioce for "realistic" configurations is
however likely to be very small. uo therefore may be

calculated easily.

The angle ag has a special significance, it indicates
the side of the wing on which thenleading edge vortex lies.
For a > oy the leading edge vortex lies above the upper
surface and vice-versa.

Fig. 8 depicts the variation of sinas/k for a set of
camber lines. As might be expected, a, increases both with

increasing amount of droop and as the shoulder position approaches

the leading edge. N
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As mentioned in the Introduction, previous work
contains adequate reference to uncambered and circular camber
wings (zero shoulder position). The emphasis in this report
is therefore on the aerodynamic effects as the shoulder
position moves out toward the leading edge. Both attached

and separated flow solutions have been considered.
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III.1 Attached Flow

In general, the Attached Flow theory applied for small
incidences only. Fig. 9 shows the effect of shoulder
position on C; at fixed incidences for two values of camber
parameter H = 0.05s and O.ls. It is noted that, in general,
as incidence increases the effect due to a fixed droop decreases.
When the shoulder of the droop tends to the leading edge, there
is a gain in 1ift, although for most part droop causes a

reduction in lift at a particular attitude.

In Fig. 10 pressure distributions are shown at 5°
incidence (k = .25) for various shoulder positions. It is
interesting to note the oscillatory behaviour of the pressures

near the leading edge on the upper surface as the shoulder moves

outboard from .775s to f875s.

Such a behaviour is also likely to arise for some other
droop configuration at a different incidence. It also
illustrates the problem of determining C; and Cp from Cp
distribution by numerical integration. A large number of

sampling points may be required near the leading edge.
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III.2 Seggrated Flow

Figs. 11 and 12 show a selection of results as the
shoulder position of the droop is varied. The cember
parameter values considered are H = ,058, .10s. In each

case the following relationships have been presented:

(1) vortex locus.

(11) vo “tex height (zy + H)A against «a.

3
(1i1) vorcex strength %% against o .

(iv) C;, against «a

Constant C; or a lines where appropriate have been

interpolated.
For shoulder positions less than .9s, we infer:-

(1) vortex locus moves outwards both with increasing
shoulder position and camber.

(11) For a given shoulder position, the vortices move
closer to the surface as camber increases.

(111) For a given camber, as the shoulder moves outwards
the vortex strength decreases at a fixed incidence.
This is particularly noted at smaller incidences.
At higher incidence the curves approach the flat
wing case.

(iv) For a given camber, as the shoulder moves outward,
the 1ift decreases at a particular incidence, the

tendency being more marked at lower incidenco2as.
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An interesting feature of results is that for shoulder
positions very near the leading edge, the vortex height is
apparently multi-valued through a small incidence range
(e.g. for configuration with n = .95s, H = .05s and
10.0° < a < 15.0°). Lift~incidence and vortex strength ~
incidence relationships also exhibit a similar tendency.

The solution therefore admits the possibility of up to three
different flow-fields. Fig.l1l3 showsthe three types of
pressure distributions corresponding to three vortex positions -~

"low”, "intermediate" and "high" at o % 11.7°. The span-

A acd

i wvise variation of the velocity tangential to the upper surface

in the cross-flow plane is shown in Fig.14. for all three B

vortex positions. The curves indicate that reattachment 4

streamlines which enclose the separation and then split in

two ways impinge on the wing for the "low" and "intermediate" 1

vortex positions (vis. .98s and .85s respectively) but not

? for the "high" vortex position. Flow patterns as sketched

: in Fig.15 are indicated. The flow patterns also show

| general agreement with the features of pressure distributions.

f For the "low" vortex position the peak suction appears outboard
of the shoulder. For the "intermediate" and "high" vortex
position the peak suctions occur near and inboard of the shoulder

position respectively.

This analysis leads to the question of what happens in

@ R A g wew

experimental flows where the results are not likely to be

multiple-valued for a given configuration and there would be a

" Il TR

preferred flow field. Two possible explanations may be advanced

as follows:-
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(i) The preferred flow-field would depend on the shape of the

wing plan form near the section under consideration. If the sweepback
decreases aft of the section under consideration (as in Fig.l6(a))
the tendency may be towards attached flow type of flow field

e.g. either for "low" or "intermediate" position. Conversely,

if the swmwepback increases aft of the section under consideration,

then the tendency may be for "high" position flow field. (Fig.16(b))

(1i) The velocities on the wing surface for the "low" and
"intermediate"” vortex positions are fairly large near the
leading edge. It is therefore not difficult to visualise the

existence of multiple vortex system as sketched in Fig. 17.

Of the above two explanations, the latter one seems very
plausible and experimental evidence indicates the presence of

a number of vortex systems. This however suggests that the

theoretical approaches generally used for design work which
simulate only one separation system are not likely to be
adequate. This criticism applied equally to conical and

non-conical or 1lifting surface approaches.

It must be mentioned that Levinsky and Wei (17) also
show the existence of multiple separations on slender bodies
with Strakes (Fig.18). Their model however deals with only
one separation. Additional criteria based on the development
of the boundary layer on the body will be required to fix the

strength and position of the second separation.
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Comparisons at Constant C.,.

1 It is of interest to compare various quantities for a
i given CL' Taking for example a value of CL = 0.3, we

E look at the effect of droop shoulder position keeping the

height of camber a constant at H = .05s. The results are f
shown in Fig. 19 and 20 we note the following as droop

shoulder position increases:

(1) linear part if lift increases and the non-linear

part decreases.
(i1) induced drag decreases and then increases again.
(1i1) incidence required at the centre line increases.

(iv) The vortices move closer towards the leading edge.

(v) Up to shoulder position of 0.85s, the peak suction !
pressure on the upper surface increases and also its
position moves outwards signifying a drag reduction
acting on the drooped leading edge.

For shoulder position 0.95s, the suction peak is
much smaller and this corresponds to a slight increase

in 1ift induced drag.

To enable general conclusions to be drawn, this type of
analysis needs to be carried out for a number of droop

configurations.
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Lift Dependent Drag Factor k;

wACp;
The variation of lift dependent drag factor k) = ——E—zi at various lift
L

coefficients for a representative series of wings with leading edge droop has

been considered.

Wings with Circular-arc Cambers n = 0

Figure 21 shows the variation of the factor k; for leading edge droop up
to O.4s. It is noted that the factor k; reduces with increasing Cj. The
discontinuities in the curves near low Cj, values occur near the attachment

3 angles of ?t§ack. The values for k; without leading edge singularity based
5

on Smith's results are shown for reference. TFlow separation, therefore,

is beneficial and gives a reduction in kj.

(14)

Figure 22 shows a comparison between Barsby's results with vortex
sheet separation model and the present approach. It is interesting to note
that at lower values of C;, the present approach gives lower values for ki
but for higher values it predicts higher values. The correspondence of the

two methods improves with increasing camber.

Wings with Leading Edge Droop

The variation of shoulder position for leading edge droop of 0.05s and

0.1s has been depicted in Figures 23 and 24. It is noted that moving the

shoulder of the camber outwards means a reduction in k;.

For a given shoulder position at 0.8s the effect of leading edge droop
has been shown in Figure 25. It is noted that increased droop is generally
beneficial, but it may lead to a limiting value for droop. Further work l

can be done on this aspect to optimise the leading edge droop geometry for

given Cj.
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IV CONCLUSIONS AND RECOMMENDATIONS

In this report, slender body theory with exact boundary
condition has been used to calculate the flows past a thin
conically cambered wing (i.e. with drooped leading edges).
The flow separation has been modelled as a vortex-cut

arrangement.

Calculated results suggest that leading edge droop has
a very marked effect on the local pressures near the leading
edges and hence the overall aerodynamic forces. In
particular, the lift-drag ratio can be enhanced by suitable
choice of leading edge droop. The calculations need to be

generalised for a set of cambers.

The results indicate a multiple valued solution for
realistic cambers i.e. when the shoulder of the droop is very
near the leading edge. In experiment, this is not likely and
another separation system may exist near the high curvature
wing-section. The work in this report therefore voints to
inadequacy of current design appvoaches with simulation of one

vortex system only.

The method of this report may also be extended (see Fig.
26) to incorporate thin extensions of wing span, 1leading edge
devices, secondary vortices and variation of separation points,
cross-section thickness may also be included. More realistic

vortex sheet representation (Ref.13) may also be incorporated.

From the point of view of aircraft manceuverability, wing

root gaps or leading edge gaps may also need to be studied.

Asymmetrical configurations are also of interest.

Y
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APPENDIX A

Evaluation of Integral IV(ZO)

From Equation (27) we have
2a

. a (A ) da°
Iv(zo) 2 -
o 5 Z
2n

ay I va (A%)=v, (1)

L) Dol T ., m f
R 7 o) | g

a [ ¥, (A*)=vp ()
” o -& ’ da + aj vnc(‘) . Iu(zo)

It is noted that the value of Iu(Zo) depends on whether Zolies on
the surface of the circle or outside. It can be evaluated as follows:-

"
1 dA
1 (2 ) = o e
u'o " ..L 2o~
=£[2"_1 T SR
A zo-z;’ 4z 7 'o
Now Z = a e“ therefore we nce gi;r s - —i: )
o 1 dZn /'o .
2n o » n
i dZg i 1 1
I(z)z-_L——-_ﬂ-—'T_ 3 :--——-f -—,.—-qdz'
u o " (7.o 7,0 )/.n wz" A .7,0 zo-zo o

If Zo 1ies on the surface of the circle then

Iu(zo) = o (zTi - ni) =

L2
L ™
ol

L]
1f '/.‘.o Lies ontaide the civele then

- . ——1-— 14 -.2.
lu(Zo) = 7 (2ni-0) 7

————-_zz_
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APPENDIX B

The reduction of Wz to &, and evaluation.

21

W, = C j B' log (zo-z5)de'.
o

Denoting the real part of W: by ¢, we have
21

%, = C I B' log |zo—z5|de'.
o)

In the Z4-plane if ®», is to be evaluated at a point
outside the circle, the integral presents no problem.

However, on the surface, special care is required to deal

with loglzo-26| term.

If we denote the radius of the circle by d then we
have
° n/2 t ' L} ]
, =C B loglyo*iz,~Y,' 12, I[yo+izo+y° -1z |

=1},

from the symmetry about the zg-axis. Hence on the circle

$2 % Jnﬁ
-

% InﬂBclog 4{(62-2020')2 - y°2y°|2}del .
~Te

Putting y,? = d2-z52 we have

9'109[()’0‘}'0')2 + (zo--zo')’] [(Yo"'Yo')z + (zo-zo')’]de'
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T2
¢, = C I B'log 2d|zgy-2z,'|d6"’
_nﬂ

on the surface of the section.

Since z,-2z = 21-23' we have on the surface, taking

'
o

note of the signs of B'

12 zl'z'xu
¢, = C J B'log|0——~ ds' (Al)
0 21ty
where Z1, is value of 21' at a point specified by 6'

and zll' is its value at the corresponding point on the

lower surface specified by =-6'.

tan¢

Given siny = tand ’ sin¢ = sinécosHd
we have
cos8 = sény , sind = cosg51n6
cosd = cosé sind = sinysiné
G G
G2 =1 - cos?ysin?s.
and

r = a tanésiné a¥Yl + tan‘és?

a/c.(l + sindcosy)

r = a/G.(1 - sinécosy)

rr = a?




we have

= = a_cosdécosy
1 r sinf l-cosysing

' oo = & _cosdcosy’
21" ¥ sing' 1-cosy'siné

a cosScosy’
l+cosy'siné

’__! 122 -
zlz- r'siné

- _ cos® cosy
and a6 cosdsinb dy.

On substitution, the log term in equation ( Al) becomes

, cosy - cosy'
z3-zqu | _ (I-cosysing) (1-cosy'sing)
log,zl_z 1&' log cosy cosy'

T=cosysind “T+cosy 'sind !

cosy-cosy' l4+cosy'siné
cosp+cosPp' X T-cosy'sind

logl

cosy—-cosy' l+cosy'siné
log , cosy+cosy '+ logll-cosw'siné

;
; ®, now becomes

9. - cosy-cosy' l+cost¥'sind '
) 2 =C Jo B! l°g'cosw+cosw *+ lo9|T=C5syTsing | | 9°
!
= ClIA + IBI

I, I
I, =I 2 o 1Og|ge§ww_,i 46"

o cosy+cosy

T l+cosy'sind
= L]
Ig fo B! logl -cosy'sin , a6

L
—— |
w——d
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If B'de' 1is now put in the form

B'de' = - %tandcoszd g(pv)dy' i
where ;
gub') = - B'a0 .t Q. ;
then o)
IA = - %tanécoszé I g(yp?') loglggé%iggg%;l ay'.

I,
Now g(I=¢') = -g(¢¥")
therefore

i
I, = %tandcoszs [ g(y')log|cosy-cosy'| dy’.
“ 0

I may also be reduced in similar way

B
I_ = >tanscos?s nk(w')lo ll+cosw'sin6 dy’
B 4 og 9| T=cosy'sind .
$, 1is now given by
= 1 2
%, =¢C 4tanGcos G(JA(w) + JB)}
e 11
where J,(¥) = | g(y') log|cosy=-cosy' |dy"*
‘0
) (T l+cosy'siné {
JB = Jo g(w')log’l-cosw sinGl ap’ . T

The value of JA(w) depends on ¥ hut JB is a constant

for a given wing and may be calculated bv numerical integration.
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Evaluation of J, ()

n

JA(W) = J g(y')log|cos¥-cos¥'| ay'.
0

This evaluation of thin form of integrals has been
discussed by Weber (17) and a solution using Fourier Series is
suggested. We know that g(¢¥) is an odd function which also

gives g(y'=0) = g(P'=llr) = g(P'=I) = 0 we write

N-1
g(v') = ] bycosvy' (N even)
v=1,3,5
N I
Iy = )) I cos VW' log|cosy~cosy'| dy
v=0,2 ‘o

¥ op
= I ] = cosvi.
v=l Vv

The coefficients b are calculated from

v
2 (N even)
b Z g(¥,) .cosvy
M u=o 1, E K
{(v=1,3,5...N-1)
wn = %E . : (N even)

(p=0'1'2I..N)

S i ———— S —
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ALPENDIX €

Caleulation ot wy, = Lxact Method

I'rom Lqudations (38) and (41)

27
[ B'(8')do"
RiTI VA ) 0, =4
°lu.k. o L.L
-16 10"
a_e - - - rat
At the leading edge 20 = 356 ! Zo-%5 = 23~%] = a re
Therefore
% = CJHA { L 16 1 v + 1 :
I = -
o a-r'e’’ a-re 18 a-r'ei(n 67)

. 1 :
a_r.e-i<n-e')} o,

Where r' is value of r' when 0' is replaced by -§°'

we find that

Il ig
ay = cJ 2p {2&2__22§2l } de
6]

a sing!
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Using equations (9), (10) and (11), and noting that

where

Using

Equation (35) becomes

T +T _ -216 '
iV sin« = %ﬁ' [ ® _le] + 32iV cosa eiG’_L‘:i—;rg-Il.[ g_—zrr-l ] :
Ty . § & ees e <% :

e ‘e

The integral I, has been evaluated in Ref.7 as

- 8iné S2_ 4S%_ 12 cZ2 o _ 2¢c? c*t _ 4 3
Il T[l'l-‘c §% (6c%=-8¢c Y + 8 +

where

r' = r' = 2a tan§ sind"
r' + r' = 2a secé cos¢’
r're’ = a2,

_ g&(czsin3¢' + R?sin¢')cosh 21elb .
ap = C AN x 2 dae
0 [27]
i3
- 2ie
- C . -_—a . 11
@& 2 ' 2 3,0
-1 (c®sin3¢' + R?sind¥¢')cosh '
I, =7 " de
0 [z']

equation (36) we obtain

ié k.a. I .

a. = 32Vi cosa.e s cos75 I,

D

h h ~ h?

h?= 1 + %q, c = c/a.

[ RN
vamprat— iy
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